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Abstract
The study deals with the estimation of the metabolic activity of neutrophils measured with a chemi-

luminescence assay in children with type I diabetes depending on the disease duration, compared to the
control group. The study involved 87 children with type I diabetes aged 4 to 21 years (52 girls, 35 boys).
Patients were divided into four subgroups depending on the disease duration: subgroup I – the disease
duration up to 12 months (35 children), subgroup II – the disease duration up to 5 years (28 children),
subgroup III – the disease duration up to 10 years (12 children), and subgroup IV – the disease dura-
tion over 10 years (12 children). The control group was composed of 23 persons – healthy volunteers
aged 20 to 25 years (mean age 23 years). The metabolic activity of neutrophils was determined in a lumi-
nol-dependent chemiluminescence assay. The spontaneous and stimulated chemiluminescence of
neutrophils (fMLP, opsonised Zymosan, PMA) was tested on a 96-well microplate (LB96P-WMP).
The chemiluminescence assay was conducted using a luminometer (MicroLumat LB 96P of E&G
BARTHOLD). The results have been written in RLU units (Relative Light Units/s) as the maximum val-
ue of chemiluminescence (CLmax). The test showed statistically significantly lower values of sponta-
neous and stimulated neutrophil chemiluminescence in all subgroups, compared to the control group.
The lowest levels of neutrophil CL were in subgroup III (neutrophils stimulated with fMLP and PMA)
and also in children with newly detected diabetes (Zymosan-stimulated neutrophils).
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Introduction
Many pathologies result from physical and chemical reac-

tions that lead to the formation of highly reactive forms of
oxygen referred to as free radicals [1, 2]. They originate main-
ly from processes occurring inside granulocytes which acti-
vate the NADPH oxidase enzyme system, which produces
a phenomenon called a respiratory burst [3]. Released RT are
necessary for intracellular destruction of many microorgan-

isms, acting with granulocyte enzymes as an essential part of
the immune system that protects against most pathogens. RT
released into the extracellular space or as a result of exces-
sive activation of neutrophils, or due to a decreased activity
of enzymes neutralizing their activity (SOD, catalase, perox-
idase), or as a result of lipid peroxidation, lead to the forma-
tion of protein oxidation products, and damage the sur-
rounding cells and even tissues, leading to the development
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of inflammation and autoimmune processes [4-7]. Diabetes
is one of the conditions in which the processes leading to the
damage of pancreatic islet β cells are closely related to the
free radical pathology [8-11]. Elevated blood glucose increas-
es oxidative stress and release of free radicals, thereby caus-
ing the activation of NF-κB [12]. It is believed that excessive
activation of neutrophils may occur a few or more months
ahead of the onset of symptoms, and the then produced RT
along with a network of pro-inflammatory cytokines, nitric
oxide, and autoreactive T cells may in favourable conditions
(genetic background, infections, stress, dietary errors) lead to
the destruction of the islets of Langerhans [13-17].

Therefore, the aim of this study was to assess the meta-
bolic activity of neutrophils in children with type 1 diabetes,
depending on the disease duration, compared to the control
group.

Material and methods
The study involved 87 children with type 1 diabetes aged

4 to 21 years (52 girls and 35 boys, mean age 13 years) who
were patients of the Clinic of Developmental Endocrinolo-
gy, WroclawMedical University (in 2000/2001). Depending
on the disease duration, patients were divided into four sub-
groups:
• subgroup I – the disease duration up to 12 months (35 chil-
dren),
• subgroup II – the disease duration up to 5 years (28 chil-
dren),
• subgroup III – the disease duration up to 10 years (12 chil-
dren),
• subgroup IV – the disease duration over 10 years (12 chil-
dren).
The control group consisted of 23 people – healthy vol-

unteers aged 20 to 25 years (mean age 23 years).
All patients were receiving humanized insulin injections

several times a day from the early onset of diabetes mellitus.
The study was approved by the Bioethics Committee (858/01-
03) at the Wroclaw Medical University.

The material for this study was venous blood collected
during basic diagnostic tests or checks into plastic tubes with
heparin in a closed system. The metabolic activity of neu-
trophils was measured using a luminol-dependent chemilu-
minescence assay. The spontaneous and stimulated neu-
trophil CLwas studied (fMLP, opsonised Zymosan, PMA) in
a 96-well white microplate (LB96P-WMP) according to
Lewkowicz et al. [18]. The order of addition and volume of
reagents are shown below:

No stimulation: FMLP:
1. PBS 40 µl 1. PBS 20 µl
2. Luminol 20 µl 2. fMLP 20 µl
3. Whole blood 40 µl 3. Luminol 20 µl

4. Whole blood 40 µl

PMA: Zymosan:
1. PBS 20 µl 1. PBS 20 µl
2. PMA 20 µl 2. Zymosan 20 µl
3. Luminol 20 µl 3. Luminol 20 µl
4. Whole blood 40 µl 4. Whole blood 40 µl

Each of the systems was repeated three times, and the
arithmetic mean of the values received was calculated. The
study was conducted using a chemiluminescence lumi-
nometer (LB 96P MicroLumat of E&G Barthold). The
device was controlled by WinGlow software in the Win-
dows environment. Spot measurements were taken within
0.2 seconds every 60 seconds at 37°C. The test took 45 min-
utes. Results are expressed in RLU (Relative Light Units/s)
as the maximum chemiluminescence (CLmax). Since CL
depends linearly on the number of neutrophils, while heme
compounds reduce its value, the chemiluminescence results
were adjusted to their absolute number and haemoglobin
content in the blood tested by the formula:

Hb [%]CLCALCULATED = CLDETERMINED × ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
PMN [%] ×WBC [thous./100 µl]

where Hb is haemoglobin and PMN is the percentage
of neutrophils in the total number of white blood cells
(WBC).

A statistical analysis conducted using the Mann-Whit-
ney U test involved determination of the arithmetic mean,
standard deviation, and the level of significance (p < 0.05)
for each parameter of neutrophil CL in examined patients
and the control group. Using the Kruskal-Wallis ANOVA
by Ranks test, box and whisker plots were made showing
individual parameters of neutrophil CL including the mean,
standard deviation and standard error for examined patients
and the control group.

Results
The results of spontaneous neutrophil CL are summa-

rized in Fig. 1. Significantly lower CL values were shown
in all children with diabetes, regardless of the disease dura-
tion. There were no statistically significant differences in
spontaneous neutrophil CL values between subgroups I and
II, II and III, III and IV, I and III, I and IV. Significantly
lower values of spontaneous CLwere observed in subgroup
IV in comparison with the results obtained in subgroup II.
The effect of fMLP stimulation of neutrophils in the exam-
ined group is presented in Fig. 2. Significantly lower val-
ues of neutrophil CL were demonstrated in subgroups I, III
and IV, compared to the control group. There were no sta-
tistically significant differences between the CLmax levels
in subgroup II, compared to healthy subjects. The lowest
values of CL after stimulation with fMLP were found in
subgroup III, i.e. in children with diabetes in the time inter-
val from 5 to 10 years. There were no statistically signifi-
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cant differences in CLmax levels between subgroups I and
II, II and III, III and IV, and between I and III, I and IV, II
and IV. Neutrophil response to stimulation with PMA is giv-
en in Fig. 3. All subgroups of children with diabetes had
significantly lower CLmax values, compared to the control
group. The weakest response to PMA stimulation was
observed in subgroup III (i.e. in children in whom the dis-
ease lasts from 5 to 10 years). There were no statistically
significant differences in the maximum values of neu-
trophil CL between subgroups I and II, I and IV, and II

and IV. Figure 4 presents CLmax results after stimulation
with opsonised Zymosan. Significantly lower neutrophil CL
was reported in all the examined subgroups, compared to
the control group. The lowest levels of neutrophil CL were
observed in children with newly detected diabetes. There
were statistically significant differences in CLmax between
subgroups I and II, and I and IV. There were no statistical-
ly significant differences in the values of Zymosan-acti-
vated neutrophil CL between subgroups II and III, III and
IV, as well as I and III, II and IV.

The metabolic activity of neutrophils measured with a chemiluminescence assay in young patients with type 1 diabetes depending on the
disease duration

6.5

5.5

4.5

3.5

2.5

1.5

0.5

–0.5

C
L
sp
on
t
(R
L
U
/s
)

diabetes – total < 5 years > 10 years
duration

< 12 months < 10 years control group
children suffering from diabetes

± standard deviation

standard error

mean

Fig. 1. Spontaneous chemiluminescence of neutrophils in chil-
dren with diabetes compared to the control group
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Fig. 2. The maximum value of neutrophil chemiluminescence
after fMLP stimulation in children compared to the control
group
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Fig. 3. The maximum value of neutrophil chemiluminescence
after PMA stimulation in children compared to the control
group
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Fig. 4. The maximum value of neutrophil chemiluminescence
after opsonised Zymosan stimulation in children diabetes com-
pared to the control group
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Discussion
Maintaining the stability of the neutrophils-RT-

antioxidant enzymes system determines maintaining RT
concentrations at the appropriate level that is sufficient to
protect against infectious agents, without causing damage
associated with excessive proliferation of these compounds.
Telci et al. [19] showed elevated levels of markers of oxida-
tive damage to proteins and decreased plasma antioxidant
capacity in children with type 1 diabetes, compared to the
control group. Studies showing impaired neutrophil oxida-
tive metabolism in patients with diabetes were conducted
as early as in the 1990s [20, 21]. Decreased oxidative metab-
olism of neutrophils measured with a chemiluminescence
assay was also demonstrated in children with type 1 dia-
betes in a variety of clinical conditions (good, medium,
severe), compared to healthy subjects [22]. In the present
study, all tested systems (spontaneous and stimulated CL)
showed impaired neutrophil oxidative metabolism in all
subgroups of children with diabetes, compared with the con-
trol group. Thus, impaired response of neutrophils to both
receptor stimulation (fMLP, Zymosan) and non-receptor
stimulation (PMA) was reported. A similar observation was
made by Nishizawa et al. [23] who showed impaired neu-
trophil CL after stimulation with fMLP in patients with type
1 diabetes, compared to healthy subjects. Kantara et al. [24]
reported significantly enhanced spontaneous CL in patients
with diabetes compared to healthy subjects, which was not
observed in the present study. PMA stimulation of neu-
trophils resulted in convergent observation, i.e. a signifi-
cant reduction in CL in comparison with healthy subjects.
It is worth noting that the lowest CL values were found in
children from subgroup III (after stimulation with fMLP
and PMA). In subgroup IV, i.e. in children with the longest
disease duration (over 10 years) CL results (after stimula-
tion with PMA) were statistically significantly higher than
in children from subgroup III. Longer duration of diabetes
increases the risk of the so-called late complications
(microangiopathy, vascular lesions) directly related to RT
activity [25]. Perhaps the slight increase of CL observed in
children with the longest disease duration indicates the
beginning of the process. It is noteworthy that the lowest CL
levels (after stimulation with Zymosan) were reported in
children with newly detected diabetes. This may indicate
that neutrophil dysfunctions (related to the processes of
phagocytosis and CL) occur at an early stage of the disease.
Descamps et al. [26] showed no changes in spontaneous
neutrophil CL in patients with newly detected diabetes (the
tests were performed 2 months after the onset of diabetes).
After stimulation with fMLP and PMA, the researchers
observed enhanced neutrophil CL. After three months of
treatment, CL reached the normal values of healthy sub-
jects. Unfortunately, the research was not continued in
a longer time interval. The fact of poor response to this type
of neutrophil stimulation explains the tendency of patients
with suspected or newly detected diabetes to have frequent

infections during this period. In the present study, the situ-
ation observed in children with diabetes was similar to that
of recurrent respiratory infections in children and adults
[27-29], in which a decline in neutrophil CL, probably
resulting from recurrent infections, was observed. Perhaps
chronic activation leads to the depletion of neutrophil ener-
gy reserves and consequently to a decline in their CL. The
possibility of the existence of different functional states of
neutrophils, including the state of “exhaustion”, has been
described by various authors [30]. In this study chronic pre-
activation of neutrophils in a high concentration of glucose
in the body can decrease the sensitivity of these cells to sub-
sequent stimuli. The reduced neutrophil CL in children with
type 1 diabetes observed in this study is in apparent con-
tradiction to the fact of excessive activity of neutrophils in
the pathophysiology of diabetes. It must be noted that the
oxidative burst of neutrophils is influenced by various fac-
tors, such as certain drugs, impaired glucose profile, insulin,
blood ph disorders associated with the accumulation of
acidic metabolites, and finally elevated levels of haemo-
globin and its derivatives which significantly reduce neu-
trophil CL in whole blood [31, 32]. The presence of ele-
vated levels of glycated haemoglobin (HbA1C) in
erythrocytes in patients with uncontrolled diabetes may be
the essence of this phenomenon. Studies conducted in vit-
ro by Oldenborg et al. [31] on healthy people showed inhi-
bition of neutrophil chemiluminescence after stimulation
with fMLP by insulin. Gallacher et al. [34] found lower CL
values in adults with diabetes, compared to the control
group. The authors also found a negative correlation
between blood levels of chemiluminescence and HbA1C.
Thus, the weakening of neutrophil bactericidal function
should be associated not only with direct changes in blood
glucose levels, but also with poor metabolic control of the
disease. Another cause of impaired neutrophil oxidative
metabolism may be the response of these cells to insulin.
Saeed et al. [27] showed impaired neutrophil oxidative
metabolism using a CL array in patients with diabetes, and
they attributed the inhibitory role to acidic metabolites (ace-
toacetate) present in the serum of these patients. Delamaire
et al. [36] also showed impaired neutrophil oxidative metab-
olism (chemotaxis, chemiluminescence) in patients with
type 1 diabetes. Just as in the present study, the PMA and
Zymosan-stimulated CL of neutrophils was lower, com-
pared to healthy subjects. Marhoffer et al. [37] demonstrated
lower neutrophil CL after stimulation with PMA in diabet-
ic patients, compared to healthy individuals. Assessing the
phenomena associated with RT generation, we should, if
possible, include processes occurring inside neutrophils as
well as processes associated with the so-called extracellu-
lar CL resulting from lipid peroxidation of cell membranes
(directly independent of NADPH oxidase), however, as
a consequence leading to tissue damage and the accumula-
tion of metabolites (malonic aldehyde) associated with the
activity of other free radicals and nitric oxide [38].
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Conclusions
Children with diabetes, regardless of the disease dura-

tion, had impaired spontaneous oxidative metabolism of
neutrophils measured with a chemiluminescence assay in
comparison to the control group.
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